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Abstract

This paper is written in three main sections. In the first and third, W. W. is responsible both for the ideas and the
form. The middle section, namely “2) Communication Problems at Level A” is an interpretation of mathematical
papers by Dr. Claude E. Shannon of the Bell Telephone Laboratories. Dr. Shannon’s work roots back, as von Neu-
mann has pointed out, to Boltzmann’s observation, in some ofhis work on statistical physics (1894), that entropy
is related to “missing information,” inasmuch as it is related to the number of alternatives which remain possible to
a physical system after all the macroscopically observableinformation concerning it has been recorded. L. Szilard
(Zsch. f. Phys.Vol. 53, 1925) extended this idea to a general discussion of information in physics, and von Neumann
(Math. Foundation of Quantum Mechanics, Berlin, 1932, Chap. V) treated information in quantum mechanics and
particle physics. Dr. Shannon’s work connects more directly with certain ideas developed some twenty years ago
by H. Nyquist and R. V. L. Hartley, both of the Bell Laboratories; and Dr. Shannon has himself emphasized that
communication theory owes a great debt to Professor NorbertWiener for much of its basic philosophy. Professor
Wiener, on the other hand, points out that Shannon’s early work on switching and mathematical logic antedated his
own interest in this field; and generously adds that Shannon certainly deserves credit for independent development
of such fundamental aspects of the theory as the introduction of entropic ideas. Shannon has naturally been spe-
cially concerned to push the applications to engineering communication, while Wiener has been more concerned with
biological application (central nervous system phenomena, etc.).
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1 Introductory Note on the General Setting of the Analytical Communica-
tion Studies

1.1 Communication

THE WORDcommunicationwill be used here in a
very broad sense to include all of the procedures by

which one mind may affect another. This, of course, in-
volves not only written and oral speech, but also music,
the pictorial arts, the theatre, the ballet, and in fact all hu-
man behavior. In some connections it may be desirable to
use a still broader definition of communication, namely,
one which would include the procedures by means of
which one mechanism (say automatic equipment to track
an airplane and to compute its probable future positions)
affects another mechanism (say a guided missile chasing
this airplane).

The language of this memorandum will often appear
to refer to the special, but still very broad and important,
field of the communication of speech; but practically ev-
erything said applies equally well to music of any sort,
and to still or moving pictures, as in television.

1.2 Three Levels of
Communications Problems

Relative to the broad subject of communication, there
seem to be problems at three levels. Thus it seems rea-
sonable to ask, serially:

LEVEL A. How accurately can the symbols of communica-
tion be transmitted? (The technical problem.)

LEVEL B. How precisely do the transmitted symbols convey
the desired meaning? (The semantic problem.)

LEVEL C. How effectively does the received meaning affect
conduct in the desired way? (The effectiveness prob-
lem.)

The technical problemsare concerned with the ac-
curacy of transference from sender to receiver of sets of
symbols (written speech), or of a continuously varying
signal (telephonic or radio transmission of voice or mu-
sic), or of a continuously varying two-dimensional pat-
tern (television), etc. Mathematically, the first involves
transmission of a finite set of discrete symbols, the sec-
ond the transmission of one continuous function of time,
and the third the transmission of many continuous func-
tions of time or of one continuous function of time and
of two space coordinates.

Thesemantic problemsare concerned with the iden-
tity, or satisfactorily close approximation, in the interpre-
tation of meaning by the receiver, as compared with the
intended meaning of the sender. This is a very deep and
involved situation, even when one deals only with the
relatively simpler problems of communicating through
speech.

One essential complication is illustrated by the re-
mark that if Mr. X is suspected not to understand what
Mr. Y says, then it is theoretically not possible, by hav-
ing Mr. Y do nothing but talk further with Mr. X, com-
pletely to clarify this situation in any finite time. If Mr. Y
says “Do you now understand me?” and Mr. X says “Cer-
tainly, I do,” this is not necessarily a certification that un-
derstanding has been achieved. It may just be that Mr. X
did not understand the question. If this sounds silly, try
it again as “Czy pafi mnie rozumie?” with the answer
“Hai wakkate imasu.” I think that this basic difficulty1 is,
at least in the restricted field of speech communication,
reduced to a tolerable size (but never completely elimi-
nated) by “explanations” which (a) are presumably never
more than approximations to the ideas being explained,
but which (b) are understandable since they are phrased
in language which has previously been made reasonably
clear by operational means. For example, it does not take
long to make the symbol for “yes” in any language oper-
ationally understandable.

The semantic problem has wide ramifications if one
thinks of communication in general. Consider, for exam-
ple, the meaning to a Russian of a U.S. newsreel picture.

The effectiveness problemsare concerned with the
success with which the meaning conveyed to the receiver
leads to the desired conduct on his part. It may seem
at first glance undesirably narrow to imply that the pur-
pose of all communication is to influence the conduct of
the receiver. But with any reasonably broad definition
of conduct, it is clear that communication either affects
conduct or is without any discernible and probable effect
at all.

The problem of effectiveness involves æsthetic con-
siderations in the case of the fine arts. In the case of
speech, written or oral, it involves considerations which
range all the way from the mere mechanics of style,
through all the psychological and emotional aspects of

1“When Pfungst (1911) demonstrated that the horses of Elberfeld, who were showing marvelous linguistic and mathematical ability, were merely
reacting to movements of the trainer’s head, Mr. Krall (1911), their owner, met the criticism in the most direct manner. He asked the horses whether
they could see such small movements and in answer they spelled out an emphatic ‘No.’ Unfortunately we cannot all be so surethat our questions
are understood or obtain such clear answers.” See Lashley, K. S., “Persistent Problems in the Evolution of Mind” inQuarterly Review of Biology,
v. 24, March, 1949, p. 28.
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propaganda theory, to those value judgments which are
necessary to give useful meaning to the words “success”
and “desired” in the opening sentence of this section on
effectiveness.

The effectiveness problem is closely interrelated with
the semantic problem, and overlaps it in a rather vague
way; and there is in fact overlap between all of the sug-
gested categories of problems.

1.3 Comments

So stated, one would be inclined to think that Level A is a
relatively superficial one, involving only the engineering
details of good design of a communication system; while
B and C seem to contain most if not all of the philosoph-
ical content of the general problem of communication.

The mathematical theory of the engineering aspects
of communication, as developed chiefly by Claude Shan-

non at the Bell Telephone Laboratories, admittedly ap-
plies in the first instance only to problem A, namely, the
technical problem of accuracy of transference of various
types of signals from sender to receiver. But the theory
has, I think, a deep significance which proves that the
preceding paragraph is seriously inaccurate. Part of the
significance of the new theory comes from the fact that
levels B and C, above, can make use only of those signal
accuracies which turn out to be possible when analyzed
at Level A. Thus any limitations discovered in the the-
ory at Level A necessarily apply to levels B and C. But
a larger part of the significance comes from the fact that
the analysis at Level A discloses that this level overlaps
the other levels more than one could possibly naively sus-
pect. Thus the theory of Level A is, at least to a signifi-
cant degree, also a theory of levels B and C. I hope that
the succeeding parts of this memorandum will illuminate
and justify these last remarks.

2 Communication Problems at Level A

2.1 A Communication System and
Its Problems

THE communication system considered may be sym-
bolically represented as follows:

Information
Source

Message Message

Noise
Source

Transmitter

Signal Received
Signal

Receiver Destination

The information source, selects a desiredmessage
out of a set of possible messages (this is a particularly
important remark, which requires considerable explana-
tion later). The selected message may consist of written
or spoken words, or of pictures, music, etc.

The transmitterchanges thismessageinto the sig-
nal which is actually sent over thecommunication chan-
nel from the transmitter to thereceiver. In the case of
telephony, the channel is a wire, the signal a varying
electrical current on this wire; the transmitter is the set
of devices (telephone transmitter, etc.) which change
the sound pressure of the voice into the varying electri-
cal current. In telegraphy, the transmitter codes written
words into sequences of interrupted currents of varying
lengths (dots, dashes, spaces). In oral speech, the infor-
mation source is the brain, the transmitter is the voice
mechanism producing the varying sound pressure (the

signal) which is transmitted through the air (the channel).
In radio, the channel is simply space (or the æther, if any
one still prefers that antiquated and misleading word),
and the signal is the electromagnetic wave which is trans-
mitted.

Thereceiveris a sort of inverse transmitter, changing
the transmitted signal back into a message, and handing
this message on to the destination. When I talk to you,
my brain is the information source, yours the destination;
my vocal system is the transmitter, and your ear and the
associated eighth nerve is the receiver.

In the process of being transmitted, it is unfortunately
characteristic that certain things are added to the sig-
nal which were not intended by the information source.
These unwanted additions may be distortions of sound
(in telephony, for example) or static (in radio), or distor-
tions in shape or shading of picture (television), or er-
rors in transmission (telegraphy or facsimile), etc. All of
these changes in the transmitted signal are callednoise.

The kind of questions which one seeks to ask con-
cerning such a communication system are:

a. How does one measureamount of information?
b. How does one measure thecapacityof a communication

channel?
c. The action of the transmitter in changing the message into

the signal often involves acoding process. What are the
characteristics of an efficient coding process? And when
the coding is as efficient as possible, at what rate can the
channel convey information?

d. What are the general characteristics ofnoise? How does
noise affect the accuracy of the message finally received
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at the destination? How can one minimize the unde-
sirable effects of noise, and to what extent can they be
eliminated?

e. If the signal being transmitted iscontinuous(as in oral
speech or music) rather than being formed ofdiscrete
symbols (as in written speech, telegraphy, etc.), how
does this fact affect the problem?

We will now state, without any proofs and with a
minimum of mathematical terminology, the main results
which Shannon has obtained.

2.2 Information

The word information, in this theory, is used in a spe-
cial sense that must not be confused with its ordinary
usage. In particular,informationmust not be confused
with meaning.

In fact, two messages, one of which is heavily loaded
with meaning and the other of which is pure nonsense,
can be exactly equivalent, from the present viewpoint, as
regards information. It is this, undoubtedly, that Shannon
means when he says that “the semantic aspects of com-
munication are irrelevant to the engineering aspects.” But
this does not mean that the engineering aspects are nec-
essarily irrelevant to the semantic aspects.

To be sure, this wordinformationin communication
theory relates not so much to what youdosay, as to what
youcouldsay. That is, information is a measure of one’s
freedom of choice when one selects a message. If one
is confronted with a very elementary situation where he
has to choose one of two alternative messages, then it is
arbitrarily said that the information, associated with this
situation, is unity. Note that it is misleading (although
often convenient) to say that one or the other message,
conveys unit information. The concept ofinformation
applies not to the individual messages (as the concept of
meaning would), but rather to the situation as a whole,
the unit information indicating that in this situation one
has an amount of freedom of choice, in selecting a mes-
sage, which it is convenient to regard as a standard or
unit amount.

The two messages between which one must choose,
in such a selection, can be anything one likes. One might
be the text of the King James Version of the Bible, and
the other might be “Yes.” The transmitter might code
these two messages so that “zero” is the signal for the
first, and “one” the signal for the second; or so that a
closed circuit (current flowing) is the signal for the first,
and an open circuit (no current flowing) the signal for
the second. Thus the two positions, closed and open, of
a simple relay, might correspond to the two messages.

To be somewhat more definite, the amount of infor-
mation is defined, in the simplest cases, to be measured
by the logarithm of the number of available choices. It
being convenient to use logarithms2 to the base 2, rather
than common or Briggs’ logarithm to the base 10, the
information, when there are only two choices, is propor-
tional to the logarithm of 2 to the base 2. But this is
unity; so that a two-choice situation is characterized by
information of unity, as has already been stated above.
This unit of information is called a “bit,” this word, first
suggested by John W. Tukey, being a condensation of
“binary digit.” When numbers are expressed in the bi-
nary system there are only two digits, namely 0 and 1;
just as ten digits, 0 to 9 inclusive, are used in the deci-
mal number system which employs 10 as a base. Zero
and one may be taken symbolically to represent any two
choices, as noted above; so that “binary digit” or “bit” is
natural to associate with the two-choice situation which
has unit information.

If one has available say 16 alternative messages
among which he is equally free to choose, then since
16= 24 so thatlog216= 4, one says that this situation
is characterized by 4 bits of information.

It doubtless seems queer, when one first meets it, that
information is defined as thelogarithmof the number of
choices. But in the unfolding of the theory, it becomes
more and more obvious that logarithmic measures are in
fact the natural ones. At the moment, only one indica-
tion of this will be given. It was mentioned above that
one simple on-or-off relay, with its two positions labeled,
say, 0 and 1 respectively, can handle a unit information
situation, in which there are but two message choices. If
one relay can handle unit information, how much can be
handled by say three relays? It seems very reasonable
to want to say that three relays could handle three times
as much information as one. And this indeed is the way
it works out if one uses the logarithmic definition of in-
formation. For three relays are capable of responding to
23 or 8 choices, which symbolically might be written as
000, 001, 011, 010, 100, 110, 101, 111, in the first of
which all three relays are open, and in the last of which
all three relays are closed. And the logarithm to the base
2 of 23 is 3, so that the logarithmic measure assigns three
units of information to this situation, just as one would
wish. Similarly, doubling the available time squares the
number of possible messages, and doubles the logarithm;
and hence doubles the information if it is measured log-
arithmically.

The remarks thus far relate to artificially simple situa-
tions where the information source is free to choose only
between several definite messages—like a man pick-

2Whenmx = y, thenx is said to be the logarithm ofy to the basem.
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ing out one of a set of standard birthday greeting tele-
grams. A more natural and more important situation is
that in which the information source makes a sequence
of choices from some set of elementary symbols, the se-
lected sequence then forming the message. Thus a man
may pick out one word after another, these individually
selected words then adding up to form the message.

At this point an important consideration which has
been in the background, so far, comes to the front for ma-
jor attention. Namely, the role which probability plays
in the generation of the message. For as the successive
symbols are chosen, these choices are, at least from the
point of view of the communication system, governed
by probabilities; and in fact by probabilities which are
not independent, but which, at any stage of the process,
depend upon the preceding choices. Thus, if we are con-
cerned with English speech, and if the last symbol cho-
sen is “the,” then the probability that the next word be an
article, or a verb form other than a verbal, is very small.
This probabilistic influence stretches over more than two
words, in fact. After the three words “in the event” the
probability for “that” as the next word is fairly high, and
for “elephant” as the next word is very low.

That there are probabilities which exert a certain de-
gree of control over the English language also becomes
obvious if one thinks, for example, of the fact that in
our language the dictionary contains no words whatso-
ever in which the initial letterj is followed byb, c, d,
f , g, j, k, l , q, r, t, v, w, x, or z; so that the probabil-
ity is actually zero that an initialj be followed by any
of these letters. Similarly, anyone would agree that the
probability is low for such a sequence of words as “Con-
stantinople fishing nasty pink.” Incidentally, it is low, but
not zero; for it is perfectly possible to think of a pas-
sage in which one sentence closes with “Constantinople
fishing,” and the next begins with “Nasty pink.” And we
might observe in passing that the unlikely four-word se-
quence under discussionhasoccurred in a single good
English sentence, namely the one above.

A system which produces a sequence of symbols
(which may, of course, be letters or musical notes, say,
rather than words) according to certain probabilities is
called astochastic process, and the special case of a
stochastic process in which the probabilities depend on
the previous events, is called aMarkoff processor a
Markoff chain. Of the Markoff processes which might
conceivably generate messages, there is a special class
which is of primary importance for communication the-
ory, these being what are calledergodic processes. The
analytical details here are complicated and the reasoning
so deep and involved that it has taken some of the best ef-
forts of the best mathematicians to create the associated

theory; but the rough nature of an ergodic process is easy
to understand. It is one which produces a sequence of
symbols which would be a poll-taker’s dream, because
any reasonably large sample tends to be representative
of the sequence as a whole. Suppose that two persons
choose samples in different ways, and study what trends
their statistical properties would show as the samples be-
come larger. If the situation is ergodic, then those two
persons, however they may have chosen their samples,
agree in their estimates of the properties of the whole.
Ergodic systems, in other words, exhibit a particularly
safe and comforting sort of statistical regularity.

Now let us return to the idea ofinformation. When
we have an information source which is producing a mes-
sage by successively selecting discrete symbols (letters,
words, musical notes, spots of a certain size, etc.), the
probability of choice of the various symbols at one stage
of the process being dependent on the previous choices
(i.e., a Markoff process), what about the information as-
sociated with this procedure?

The quantity which uniquely meets the natural re-
quirements that one sets up for “information” turns out
to be exactly that which is known in thermodynamics as
entropy. It is expressed in terms of the various probabil-
ities involved—those of getting to certain stages in the
process of forming messages, and the probabilities that,
when in those stages, certain symbols be chosen next.
The formula, moreover, involves thelogarithmof proba-
bilities, so that it is a natural generalization of the loga-
rithmic measure spoken of above in connection with sim-
ple cases.

To those who have studied the physical sciences, it is
most significant that an entropy-like expression appears
in the theory as a measure of information. Introduced by
Clausius nearly one hundred years ago, closely associ-
ated with the name of Boltzmann, and given deep mean-
ing by Gibbs in his classic work on statistical mechan-
ics, entropy has become so basic and pervasive a concept
that Eddington1 remarks “The law that entropy always
increases—the second law of thermodynamics—holds, I
think, the supreme position among the laws of Nature.”

In the physical sciences, the entropy associated with
a situation is a measure of the degree of randomness, or
of “shuffledness” if you will, in the situation; and the
tendency of physical systems to become less and less or-
ganized, to become more and more perfectly shuffled, is
so basic that Eddington argues that it is primarily this
tendency which gives time its arrow—which would re-
veal to us, for example, whether a movie of the physical
world is being run forward or backward.

Thus when one meets the concept of entropy in com-
munication theory, he has a right to be rather excited—
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a right to suspect that one has hold of something that
may turn out to be basic and important. That informa-
tion be measured by entropy is, after all, natural when
we remember that information, in communication the-
ory, is associated with the amount of freedom of choice
we have in constructing messages. Thus for a commu-
nication source one can say, just as he would also say it
of a thermodynamic ensemble, “This situation is highly
organized, it is not characterized by a large degree of ran-
domness or of choice—that is to say, the information (or
the entropy) is low.” We will return to this point later, for
unless I am quite mistaken, it is an important aspect of
the more general significance of this theory.

Having calculated the entropy (or the information, or
the freedom of choice) of a certain information source,
one can compare this to the maximum value this entropy
could have, subject only to the condition that the source
continue to employ the same symbols. The ratio of the
actual to the maximum entropy is called therelative en-
tropy of the source. If the relative entropy of a certain
source is, say .8, this roughly means that this source is,
in its choice of symbols to form a message, about 80 per
cent as free as it could possibly be with these same sym-
bols. One minus the relative entropy is called theredun-
dancy. This is the fraction of the structure of the message
which is determined not by the free choice of the sender,
but rather by the accepted statistical rules governing the
use of the symbols in question. It is sensibly called re-
dundancy, for this fraction of the message is in fact re-
dundant in something close to the ordinary sense; that is
to say, this fraction of the message is unnecessary (and
hence repetitive or redundant) in the sense that if it were
missing the message would still be essentially complete,
or at least could be completed.

It is most interesting to note that the redundancy of
English is just about 50 per cent,3 so that about half of
the letters or words we choose in writing or speaking are
under our free choice, and about half (although we are
not ordinarily aware of it) are really controlled by the
statistical structure of the language. Apart from more se-
rious implications, which again we will postpone to our
final discussion, it is interesting to note that a language
must have at least 50 per cent of real freedom (or relative
entropy) in the choice of letters if one is to be able to con-
struct satisfactory crossword puzzles. If it has complete
freedom, then every array of letters is a crossword puz-
zle. If it has only 20 per cent of freedom, then it would be
impossible to construct crossword puzzles in such com-
plexity and number as would make the game popular.

Shannon has estimated that if the English language had
only about 30 per cent redundancy, then it would be pos-
sible to construct three-dimensional crossword puzzles.

Before closing this section on information, it should
be noted that the real reason that Level A analysis deals
with a concept of information which characterizes the
whole statistical nature of the information source, and is
not concerned with the individual messages (and not at
all directly concerned with the meaning of the individual
messages) is that from the point of view of engineering,
a communication system must face the problem of han-
dling any message that the source can produce. If it is
not possible or practicable to design a system which can
handle everything perfectly, then the system should be
designed to handle well the jobs it is most likely to be
asked to do, and should resign itself to be less efficient
for the rare task. This sort of consideration leads at once
to the necessity of characterizing the statistical nature of
the whole ensemble of messages which a given kind of
source can and will produce. Andinformation, as used
in communication theory, does just this.

Although it is not at all the purpose of this paper to
be concerned with mathematical details, it nevertheless
seems essential to have as good an understanding as pos-
sible of the entropy-like expression which measures in-
formation. If one is concerned, as in a simple case, with
a set ofn independent symbols, or a set ofn independent
complete messages for that matter, whose probabilities
of choice arep1, p2 . . . pn, then the actual expression for
the information is

H = −[p1 log p1 + p2 log p2 + . . . + pn log pn]

or
H = −∑ pi log pi

where4 the symbol∑, indicates, as is usual in mathe-
matics, that one is to sum all terms like the typical one,
pi log pi written as a defining sample.

This looks a little complicated; but let us see how this
expression behaves in some simple cases.

Suppose first that we are choosing only between two
possible messages, whose probabilities are thenp1 for
the first andp2 = 1− p1 for the other. If one reckons, for
this case, the numerical value ofH, it turns out thatH has
its largest value, namely one, when the two messages are
equally probable; that is to say whenp1 = p2 = 1

2 that
is to say, when one is completely free to choose between
the two messages. Just as soon as one message becomes
more probable than the other (p1 greater thanp2, say),
the value ofH decreases. And when one message is very

3The 50 per cent estimate accounts only for statistical structure out to about eight letters, so that the ultimate value ispresumably a little higher.
4Do not worry about the minus sign. Any probability is a numberless than or equal to one, and the logarithms of numbers less than one are

themselves negative. Thus the minus sign is necessary in order thatH be in fact positive.
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probable (p1 almost one andp2 almost zero, say), the
value ofH is very small (almost zero).

In the limiting case where one probability is unity
(certainty) and all the others zero (impossibility), thenH
is zero (no uncertainty at all—no freedom of choice—no
information).

Thus H is largest when the two probabilities are
equal (i.e., when one is completely free and unbiased in
the choice), and reduces to zero when one’s freedom of
choice is gone.

The situation just described is in fact typical. If there
are many, rather than two, choices, thenH is largest when
the probabilities of the various choices are as nearly
equal as circumstances permit—when one has as much
freedom as possible in making a choice, being as little
as possible driven toward some certain choices which
have more than their share of probability. Suppose, on
the other hand, that one choice has a probability near one
so that all the other choices have probabilities near zero.
This is clearly a situation in which one is heavily influ-
enced toward one particular choice, and hence has little
freedom of choice. AndH in such a case does calculate
to have a very small value—the information (the freedom
of choice, the uncertainty) is low.

When the number of cases is fixed, we have just seen
that then the information is the greater, the more nearly
equal are the probabilities of the various cases. There is
another important way of increasingH, namely by in-
creasing the number of cases. More accurately, if all
choices are equally likely, the more choices there are,
the largerH will be; There is more “information” if you
select freely out of a set of fifty standard messages, than
if you select freely out of a set of twenty-five.

2.3 Capacity of a Communication
Channel

After the discussion of the preceding section, one is not
surprised that the capacity of a channel is to be described
not in terms of the number ofsymbolsit can transmit, but
rather in terms of the information it transmits. Or better,
since this last phrase lends itself particularly well to a
misinterpretation of the word information, the capacity
of a channel is to be described in terms of its ability to
transmit what is produced out of source of a given infor-
mation.

If the source is of a simple sort in which all symbols
are of the same time duration (which is the case, for ex-
ample, with teletype), if the source is such that each sym-
bol chosen representss bits of information (being freely

chosen from among 2s symbols), and if the channel can
transmit, sayn symbols per second, then the capacity of
C of the channel is defined to bensbits per second.

In a more general case, one has to take account of the
varying lengths of the various symbols. Thus the general
expression for capacity of a channel involves the loga-
rithm of the numbers of symbols of certain time duration
(which introduces, of course, the idea ofinformationand
corresponds to the factors in the simple case of the pre-
ceding paragraph); and also involves the number of such
symbols handled (which corresponds to the factorn of
the preceding paragraph). Thus in the general case, ca-
pacity measures not the number of symbols transmitted
per second, but rather the amount of information trans-
mitted per second, using bits per second as its unit.

2.4 Coding

At the outset it was pointed out that thetransmitterac-
cepts themessageand turns it into something called the
signal, the latter being what actually passes over the
channel to thereceiver.

The transmitter, in such a case as telephony, merely
changes the audible voice signal over into something (the
varying electrical current on the telephone wire) which
is at once clearly different but clearly equivalent. But the
transmitter may carry out a much more complex opera-
tion on the message to produce the signal. It could, for
example, take a written message and use some code to
encipher this message into, say a sequence of numbers;
these numbers then being sent over the channel as the
signal.

Thus one says, in general, that the function of the
transmitter is toencode, and that of the receiver tode-
code, the message. The theory provides for very sophis-
ticated transmitters and receivers—such, for example, as
possess “memories,” so that the way they encode a cer-
tain symbol of the message depends not only upon this
one symbol, but also upon previous symbols of the mes-
sage and the way they have been encoded.

We are now in a position to state the fundamental
theorem, produced in this theory, for a noiseless channel
transmitting discrete symbols. This theorem relates to a
communication channel which has a capacity ofC bits
per second, accepting signals from a source of entropy
(or information) ofH bits per second. The theorem states
that by devising proper coding procedures for the trans-
mitter it is possible to transmit symbols over the channel
at an average rate5 which is nearlyC/H, but which, no
matter how clever the coding, can never be made to ex-

5We remember that the capacityC involves the idea of information transmitted per second, and is thus measured in bits per second. The entropy
H here measures information per symbol, so that the ratio ofC to H measures symbols per second.
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ceedC/H.
The significance of this theorem is to be discussed

more usefully a little later, when we have the more gen-
eral case when noise is present. For the moment, though,
it is important to notice the critical role which coding
plays.

Remember that the entropy (or information) asso-
ciated with the process which generates messages or
signals is determined by the statistical character of the
process—by the various probabilities for arriving at mes-
sage situations and for choosing, when in those situations
the next symbols. The statistical nature ofmessagesis
entirely determined by the character of the source. But
the statistical character of thesignalas actually transmit-
ted by a channel, and hence the entropy in the channel,
is determined both by what one attempts to feed into the
channel and by the capabilities of the channel to handle
different signal situations. For example, in telegraphy,
there have to be spaces between dots and dots, between
dots and dashes, and between dashes and dashes, or the
dots and dashes would not be recognizable.

Now it turns out that when a channel does have cer-
tain constraints of this sort, which limit complete signal
freedom, there are certain statistical signal characteris-
tics which lead to a signal entropy which is larger than it
would be for any other statistical signal structure, and in
this important case, the signal entropy is exactly equal to
the channel capacity.

In terms of these ideas, it is now possible precisely to
characterize the most efficient kind of coding, The best
transmitter, in fact, is that which codes the message in
such a way that the signal has just those optimum statis-
tical characteristics which are best suited to the channel
to be used—which in fact maximize the signal (or one
may say, the channel) entropy and make it equal to the
capacityC of the channel.

This kind of coding leads, by the fundamental theo-
rem above, to the maximum rateC/H for the transmis-
sion of symbols. But for this gain in transmission rate,
one pays a price. For rather perversely it happens that as
one makes the coding more and more nearly ideal, one
is forced to longer and longer delays in the process of
coding. Part of this dilemma is met by the fact that in
electronic equipment “long” may mean an exceedingly
small fraction of a second, and part by the fact that one
makes a compromise, balancing the gain in transmission
rate against loss of coding time.

2.5 Noise

How does noise affect information? Information is, we
must steadily remember, a measure of one’s freedom of

choice in selecting a message. The greater this free-
dom of choice, and hence the greater the information,
the greater is the uncertainty that the message actually
selected is some particular one. Thus greater freedom of
choice, greater uncertainty, greater information go hand
in hand.

If noise is introduced, then the received message con-
tains certain distortions, certain errors, certain extrane-
ous material, that would certainly lead one to say that the
received message exhibits, because of the effects of the
noise, an increased uncertainty. But if the uncertainty is
increased, the information is increased, and this sounds
as though the noise were beneficial!

It is generally true that when there is noise, the re-
ceived signal exhibits greater information—or better, the
received signal is selected out of a more varied set than
is the transmitted signal. This is a situation which beau-
tifully illustrates the semantic trap into which one can
fall if he does not remember that “information” is used
here with a special meaning that measures freedom of
choice and hence uncertainty as to what choice has been
made. It is therefore possible for the word information to
have either good or bad connotations. Uncertainty which
arises by virtue of freedom of choice on the part of the
sender is desirable uncertainty. Uncertainty which arises
because of errors or because of the influence of noise is
undesirable uncertainty.

It is thus clear where the joker is in saying that the
received signal has more information. Some of this in-
formation is spurious and undesirable and has been intro-
duced via the noise. To get the useful information in the
received signal we must subtract out this spurious por-
tion.

Before we can clear up this point we have to stop
for a little detour. Suppose one has two sets of symbols,
such as the message symbols generated by the informa-
tion source, and the signal symbols which are actually
received. The probabilities of these two sets of symbols
are interrelated, for clearly the probability of receiving
a certain symbol depends upon what symbol was sent.
With no errors from noise or from other causes, the re-
ceived signals would correspond precisely to the mes-
sage symbols sent; and in the presence of possible error,
the probabilities for received symbols would obviously
be loaded heavily on those which correspond, or closely
correspond, to the message symbols sent.

Now in such a situation one can calculate what is
called the entropy of one set of symbols relative to the
other. Let us, for example, consider the entropy of the
message relative to the signal. It is unfortunate that we
cannot understand the issues involved here without go-
ing into some detail. Suppose for the moment that one
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knows that a certain signal symbol has actually been
received. Then eachmessagesymbol takes on a cer-
tain probability—relatively large for the symbol identi-
cal with or the symbols similar to the one received, and
relatively small for all others. Using this set of probabil-
ities, one calculates a tentative entropy value. This is the
message entropy on the assumption of a definite known
received or signal symbol. Under any good conditions
its value is low, since the probabilities involved are not
spread around rather evenly on the various cases, but are
heavily loaded on one or a few cases. Its value would
be zero (see page 6) in any case where noise was com-
pletely absent, for then, the signal symbol being known,
all message probabilities would be zero except for one
symbol (namely the one received), which would have a
probability of unity.

For each assumption as to the signal symbol received,
one can calculate one of these tentative message en-
tropies. Calculate all of them, and then average them,
weighting each one in accordance with the probability of
the signal symbol assumed in calculating it. Entropies
calculated in this way, when there are two sets of sym-
bols to consider, are calledrelative entropies. The par-
ticular one just described is the entropy of the message
relative to the signal, and Shannon has named this also
theequivocation.

From the way this equivocation is calculated, we can
see what its significance is. It measures theaverage un-
certainty in the message when the signal is known. If
there were no noise, then there would be no uncertainty
concerning the message if the signal is known. If the in-
formation source has any residual uncertainty after the
signal is known, then this must be undesirable uncer-
tainty due to noise.

The discussion of the last few paragraphs centers
around the quantity “the average uncertainty in the mes-
sage source when the received signal is known.” It can
equally well be phrased in terms of the similar quantity
“the average uncertainty concerning the received signal
when the message sent is known.” This latter uncertainty
would, of course, also be zero if there were no noise.

As to the interrelationship of these quantities, it is
easy to prove that

H(x)−Hy(x) = H(y)−Hx(y)

whereH(x) is the entropy or information of the source
of messages;H(y) the entropy or information of received
signals;Hy(x) the equivocation, or the uncertainty in the
message source if the signal be known;Hx(y) the un-
certainty in the received signals if the messages sent be
known, or the spurious part of the received signal in-
formation which is due to noise. The right side of this

equation is the useful information which is transmitted
in spite of the bad effect of the noise.

It is now possible to explain what one means by the
capacityC of a noisy channel. It is, in fact, defined to be
equal to the maximum rate (in bits per second) at which
useful information (i.e., total uncertainty minus noise un-
certainty) can be transmitted over the channel.

Why does one speak, here, of a “maximum” rate?
What can one do, that is, to make this rate larger or
smaller? The answer is that one can affect this rate by
choosing a source whose statistical characteristics are
suitably related to the restraints imposed by the nature
of the channel. That is, one can maximize the rate of
transmitting useful information by using proper coding
(see pages 7 to 8).

And now, finally, let us consider the fundamental the-
orem for a noisy channel. Suppose that this noisy chan-
nel has, in the sense just described, a capacityC, suppose
it is accepting from an information source characterized
by an entropy ofH(x) bits per second, the entropy of
the received signals beingH(y) bits per second. If the
channel capacityC is equal to or larger thanH(x), then
by devising appropriate coding systems, the output of the
source can be transmitted over the channel with as little
error as one pleases. However small a frequency of er-
ror you specify, there is a code which meets the demand.
But if the channel capacityC is less thanH(x), the en-
tropy of the source from which it accepts messages, then
it is impossible to devise codes which reduce the error
frequency as low as one may please.

However clever one is with the coding process, it will
always be true that after the signal is received there re-
mains some undesirable (noise) uncertainty about what
the message was; and this undesirable uncertainty—this
equivocation—will always be equal to or greater than
H(x)−C. Furthermore, there is always at least one code
which is capable of reducing this undesirable uncertainty,
concerning the message, down to a value which exceeds
H(x)−C by an arbitrarily small amount.

The most important aspect, of course, is that the min-
imum undesirable or spurious uncertainties cannot be re-
duced further, no matter how complicated or appropriate
the coding process. This powerful theorem gives a pre-
cise and almost startlingly simple description of the ut-
most dependability one can ever obtain from a commu-
nication channel which operates in the presence of noise.

One practical consequence, pointed out by Shannon,
should be noted. Since English is about 50 per cent re-
dundant, it would be possible to save about one-half the
time of ordinary telegraphy by a proper encoding pro-
cess, provided one were going to transmit over a noise-
less channel. When there is noise on a channel, how-
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ever, there is some real advantage in not using a coding
process that eliminates all of the redundancy. For the
remaining redundancy helps combat the noise. This is
very easy to see, for just because of the fact that the re-
dundancy of English is high, one has, for example, little
or no hesitation about correcting errors in spelling that
have arisen during transmission.

2.6 Continuous Messages

Up to this point we have been concerned with messages
formed out of discrete symbols, as words are formed of
letters, sentences of words, a melody of notes, or a half-
tone picture of a finite number of discrete spots. What
happens to the theory if one considers continuous mes-
sages, such as the speaking voice with its continuous
variation of pitch and energy?

Very roughly one may say that the extended theory
is somewhat more difficult and complicated mathemat-
ically, but not essentially different. Many of the above
statements for the discrete case require no modification,
and others require only minor change.

One circumstance which helps a good deal is the fol-
lowing. As a practical matter, one is always interested in
a continuous signal which is built up of simple harmonic
constituentsof not all frequencies, but rather of frequen-
cies which lie wholly within a band from zero frequency
to, say, a frequency ofW cycles per second. Thus al-
though the human voice does contain higher frequencies,
very satisfactory communication can be achieved over a
telephone channel that handles frequencies only up to,
say four thousand. With frequencies up to ten or twelve
thousand, high fidelity radio transmission of symphonic
music is possible, etc.

There is a very convenient mathematical theorem
which states that a continuous signal,T seconds in du-
ration and band-limited in frequency to the range from 0
to W, can becompletely specifiedby stating 2TW num-
bers. This is really a remarkable theorem. Ordinarily
a continuous curve can be only approximately character-
ized by stating any finite number of points through which
it passes, and an infinite number would in general be re-
quired for complete information about the curve. But if
the curve is built up out of simple harmonic constituents

of a limited number of frequencies, as a complex sound
is built up out of a limited number of pure tones, then a
finite number of parameters is all that is necessary. This
has the powerful advantage of reducing the character of
the communication problem for continuous signals from
a complicated situation where one would have to deal
with an infinite number of variables to a considerably
simpler situation where one deals with a finite (though
large) number of variables.

In the theory for the continuous case there are devel-
oped formulas which describe the maximum capacityC
of a channel of frequency bandwidthW, when the aver-
age power used in transmitting isP, the channel being
subject to a noise of powerN, this noise being “white
thermal noise” of a special kind which Shannon defines.
This white thermal noise is itself band limited in fre-
quency, and the amplitudes of the various frequency con-
stituents are subject to a normal (Gaussian) probability
distribution. Under these circumstances, Shannon ob-
tains the theorem, again really quite remarkable in its
simplicity and its scope, that it is possible, by the best
coding, to transmit binary digits at the rate of

W log2
P+N

N
bits per second and have an arbitrarily low frequency of
error. But this rate cannot possibly be exceeded, no mat-
ter how clever the coding, without giving rise to a definite
frequency of errors. For the case of arbitrary noise, rather
than the special “white thermal” noise assumed above,
Shannon does not succeed in deriving one explicit for-
mula for channel capacity, but does obtain useful upper
and lower limits for channel capacity. And he also de-
rives limits for channel capacity when one specifies not
the average power of the transmitter, but rather the peak
instantaneous power.

Finally it should be stated that Shannon obtains re-
sults which are necessarily somewhat less specific, but
which are of obviously deep and sweeping significance,
which, for a general sort of continuous message or signal,
characterize the fidelity of the received message, and the
concepts of rate at which a source generates information,
rate of transmission, and channel capacity, all of these
being relative to certain fidelity requirements.
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3 The Interrelationship of the Three Levels of Communication Problems

3.1 Introductory

IN THE FIRST SECTION of this paper it was sug-
gested that there are three levels at which one may

consider the general communication problem. Namely,
one may ask:

LEVEL A. How accurately can the symbols of communica-
tion be transmitted ?

LEVEL B. How precisely do the transmitted symbols convey
the desired meaning?

LEVEL C. How effectively does the received meaning affect
conduct in the desired way?

It was suggested that the mathematical theory of
communication, as developed by Shannon, Wiener, and
others, and particularly the more definitely engineering
theory treated by Shannon, although ostensibly applica-
ble only to Level A problems, actually is helpful and sug-
gestive for the level B and C problems.

We then took a look, in section 2, at what this mathe-
matical theory is, what concepts it develops, what results
it has obtained. It is the purpose of this concluding sec-
tion to review the situation, and see to what extent and
in what terms the original section was justified in indi-
cating that the progress made at Level A is capable of
contributing to levels B and C, was justified in indicating
that the interrelation of the three levels is so considerable
that one’s final conclusion may be that the separation into
the three levels is really artificial and undesirable.

3.2 Generality of the Theory at
Level A

The obvious first remark, and indeed the remark that car-
ries the major burden of the argument, is that the mathe-
matical theory is exceedingly general in its scope, funda-
mental in the problems it treats, and of classic simplicity
and power in the results it reaches.

This is a theory so general that one does not need
to say what kinds of symbols are being considered—
whether written letters or words, or musical notes, or
spoken words, or symphonic music, or pictures. The the-
ory is deep enough so that the relationships it reveals in-
discriminately apply to all these and to other forms of
communication. This means, of course, that the theory is
sufficiently imaginatively motivated so that it is dealing
with the real inner core of the communication problem—
with those basic relationships which hold in general, no
matter what special form the actual case may take.

It is an evidence of this generality that the theory
contributes importantly to, and in fact is really the ba-
sic theory of cryptography which is, of course, a form
of coding. In a similar way, the theory contributes to
the problem of translation from one language to another,
although the complete story here clearly requires consid-
eration of meaning, as well as of information. Similarly,
the ideas developed in this work connect so closely with
the problem of the logical design of great computers that
it is no surprise that Shannon has just written a paper
on the design of a computer which would be capable of
playing a skillful game of chess. And it is of further di-
rect pertinence to the present contention that this paper
closes with the remark that either one must say that such
a computer “thinks,” or one must substantially modify
the conventional implication of the verb “to think.”

As a second point, it seems clear that an important
contribution has been made to any possible general the-
ory of communication by the formalization on which the
present theory is based. It seems at first obvious to dia-
gram a communication system as it is done at the outset
of this theory; but this breakdown of the situation must
be very deeply sensible and appropriate, as one becomes
convinced when he sees how smoothly and generally this
viewpoint leads to central issues. It is almost certainly
true that a consideration of communication on levels B
and C will require additions to the schematic diagram on
page 3, but it seems equally likely that what is required
are minor additions, and no real revision.

Thus when one moves to levels B and C, it may prove
to be essential to take account of the statistical charac-
teristics of the destination. One can imagine, as an ad-
dition to the diagram, another box labeled “Semantic
Receiver” interposed between the engineering receiver
(which changes signals to messages) and the destina-
tion. This semantic receiver subjects the message to a
second decoding, the demand on this one being that it
must match the statisticalsemanticcharacteristics of the
message to the statistical semantic capacities of the to-
tality of receivers, or of that subset of receivers which
constitute the audience one wishes to affect.

Similarly one can imagine another box in the diagram
which, inserted between the information source and the
transmitter, would be labeled “semantic noise,” the box
previously labeled as simply “noise” now being labeled
“engineering noise.” From this source is imposed into the
signal the perturbations or distortions of meaning which
are not intended by the source but which inescapably af-
fect the destination. And the problem of semantic de-
coding must take this semantic noise into account. It is
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also possible to think of an adjustment of original mes-
sage so that the sum of message meaning plus semantic
noise is equal to the desired total message meaning at the
destination.

Thirdly, it seems highly suggestive for the problem
at all levels that error and confusion arise and fidelity de-
creases, when, no matter how good the coding, one tries
to crowd too much over a channel (i.e., H > C). Here
again a general theory at all levels will surely have to
take into account not only the capacity of the channel
but also (even the words are right!) the capacity of the
audience. If one tries to overcrowd the capacity of the
audience, it is probably true, by direct analogy, that you
do not, so to speak, fill the audience up and then waste
only the remainder by spilling. More likely, and again
by direct analogy, if you overcrowd the capacity of the
audience you force a general and inescapable error and
confusion.

Fourthly, it is hard to believe that levels B and C do
not have much to learn from, and do not have the ap-
proach to their problems usefully oriented by, the devel-
opment in this theory of the entropic ideas in relation to
the concept of information.

The concept of information developed in this theory
at first seems disappointing and bizarre—disappointing
because it has nothing to do with meaning, and bizarre
because it deals not with a single message but rather
with the statistical character of a whole ensemble of mes-
sages, bizarre also because in these statistical terms the
two wordsinformationanduncertaintyfind themselves
to be partners.

I think, however, that these should be only temporary
reactions; and that one should say, at the end that this
analysis has so penetratingly cleared the air that one is
now, perhaps for the first time, ready for a real theory of
meaning. An engineering communication theory is just
like a very proper and discreet girl accepting your tele-
gram. She pays no attention to the meaning, whether it
be sad, or joyous, or embarrassing. But she must be pre-
pared to deal with all that come to her desk. This idea
that a communication system ought to try to deal with all
possible messages, and that the intelligent way to try is
to base design on the statistical character of the source,
is surely not without significance for communication in
general. Language must be designed (or developed) with

a view to the totality of things that man may wish to say;
but not being able to accomplish everything, it too should
do as well as possible as often as possible. That is to say,
it too should deal with its task statistically.

The concept of the information to be associated with
a source leads directly, as we have seen, to a study of the
statistical structure of language; and this study reveals
about the English language, as an example, information
which seems surely significant to students of every phase
of language and communication. The idea of utilizing
the powerful body of theory concerning Markoff pro-
cesses seems particularly promising for semantic stud-
ies, since this theory is specifically adapted to handle
one of the most significant but difficult aspects of mean-
ing, namely the influence of context. One has the vague
feeling that information and meaning may prove to be
something like a pair of canonically conjugate variables
in quantum theory, they being subject to some joint re-
striction that condemns a person to the sacrifice of the
one as he insists on having much of the other.

Or perhaps meaning may be shown to be analogous
to one of the quantities on which the entropy of a ther-
modynamic ensemble depends. The appearance of en-
tropy in the theory, as was remarked earlier, is surely
most interesting and significant. Eddington has already
been quoted in this connection, but there is another pas-
sage in “The Nature of the Physical World” which seems
particularly apt and suggestive:

Suppose that we were asked to arrange the following
in two categories—distance, mass, electric force, entropy,
beauty, melody.

I think there are the strongest grounds for placing en-
tropy alongside beauty and melody, and not with the first
three. Entropy is only found when the parts are viewed
in association, and it is by viewing or hearing the parts
in association that beauty and melody are discerned. All
three are features of arrangement. It is a pregnant thought
that one of these three associates should be able to figure
as a commonplace quantity of science. The reason why
this stranger can pass itself off among the aborigines of
the physical world is that it is able to speak their language,
viz., the language of arithmetic.

I feel sure that Eddington would have been willing to
include the word meaning along with beauty and melody;
and I suspect he would have been thrilled to see, in this
theory, that entropy not only speaks the language of arith-
metic; it also speaks the language of language.
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